
Considerations and Limitations  
 
Genome-wide association studies (GWAS) have become an essential tool for mapping 
genetic associations. Oryza GenoCLIM and CLIMGeno rely on Genome-Wide 
Association analysis to retrieve associations between genetic variants and climate 
variables that are representative of the areas from which the sequenced landraces 
originated. We recommend that users of these tools become familiar with the 
particularities of GWA approaches to better interpret the data that we present here 
(Burghardt, Young, and Tiffin 2017). In this document, we discuss and acknowledge the 
general limitations of GWA analyses and describe our approaches to address these to 
the extent possible. The benefits and caveats associated with GWAS have been 
extensively described in the literature (Tam et al. 2019; Korte and Farlow 2013; Atwell et 
al. 2010; Platt, Vilhjálmsson, and Nordborg 2010). Here, we explain these limitations in 
the context of our study. For the non-expert, the most essential point is that correlation 
should not be mistaken for causation: GWA studies demonstrate associations 
whose potential causative relationships require validation.  
 
 
1. Multiple testing 
For every hypothesis tested, there is an inherent risk of erroneously accepting a false 
hypothesis. To reduce the probability of accepting a false positive, researchers usually 
define a level of significance for which they determine that the probability of obtaining a 
type I error is acceptably low. An issue with all GWA studies is that they do not test a 
single hypothesis, but rather a vast number of hypotheses, typically testing the 
association of hundreds of thousands or even millions of genetic variants (SNPs and 
INDELs) with the trait of interest. Accordingly, the presence of false positives in any 
GWAS is unavoidable.  

Full-genome sequencing data, such as utilized here, provided by the 3K Genomes 
Project (Wang et al. 2018), facilitates the discovery of causal variants, but there is also a 
downside: the use of full-genome sequences vastly increases the number of variants 
tested, increasing the chances of uncovering causative variants, but also increasing false 
positives (type I error).  

Given this, it becomes important to estimate and control for the rate of false 
positives in such studies (Johnson et al. 2010). Accordingly, we followed a number of 
steps to reduce the number of tests (genetic variants) considered. To prioritize the most 
likely causal variants in the association lists that we provide, we filtered out variants in 
intergenic regions. To prioritize the genetic variants that are more likely to be adaptive, 
we filtered out those with a frequency < 5%. Furthermore, we include information on the 
predicted effects of each SNP (e.g., synonymous vs. non-synonymous), locus 
annotations, its frequency in the population, as well as its likelihood to alter RNA structure, 



to facilitate an informed prioritization of candidates. Most importantly, to control type I 
error, we applied the “qvalue” (Johnson et al. 2010) package in R using the Benjamini-
Hochberg approach to calculate and provide q-values of the associated SNPs. Oryza 
CLIMtools provides information on significant genome by environment associations using 
< 0.01 as the FDR threshold. However, the user can impose a more stringent FDR 
threshold if desired. Despite our measures to reduce, describe, and control type I error 
derived from multiple comparisons, users of our data should be aware that it is never 
possible to completely eliminate false positives resulting from multiple testing in GWAS.  
 
2. Population structure 
Perhaps the most studied limitation of GWA studies is the significant presence of false 
positives resulting from the confounding effects of population structure (Campbell et al. 
2005; Lander and Schork 2006; Hey and Machado 2003). Population structure refers to 
the existing difference in allele frequencies that is observed across populations of the 
same species over their distribution range. This difference in allele frequencies can be 
the result of different demographic processes, such as the existing differences among 
populations in their life histories, population size, isolation by distance, recombination, 
gene flow, and population bottlenecks. Another factor that shapes the genetic structure 
of different populations is the different selection pressures that those populations 
encounter in their native range, including in the case of crop landraces such as in this 
study, cultural and historical processes that shaped the distribution of germplasm 
(Gutaker et al. 2020).  

It is not trivial to address this issue. For instance, rice temperate and tropical 
Japonica groups diverged more than 4,200 years ago as a consequence of a global 
cooling event (Gutaker et al. 2020). When we try to identify the genetic variations that 
facilitated the adaptation of the temperate Japonica population to colder environments, 
the challenge comes from the divergence of the temperate and tropical groups and 
subsequent isolation by distance, as well as other demographic events. This then results 
in a challenge to identify adaptive genetic variants vs. covarying non-adaptive or neutral 
variants that emerged through time as a result of the divergent demographic histories of 
these two populations. 

The 3K rice population displays a well-studied population structure (Wang et al. 
2018). Mixed models and principal component analysis can be used to correct for 
population structure. Here, we used Principal Component Analysis (PCA), a widely used 
method to detect and account for population structure in association analysis. The 
inferred principal components capturing the genetic ancestry of each genotype are 
included as fixed effects in a regression-based test of association in order to account for 
population structure (Patterson, Price, and Reich 2006; Price et al. 2006). In the S1 
document of the article describing these tools, we describe in detail the considerations 



we followed to correct for population structure in our analysis (Ferrero-Serrano et al. 
2023). 

Even after implementing a correction for population structure, results are expected 
to include significant statistical inflation that introduces false positives (type I error). At the 
same time, one can also expect that there will be some number of false negative results 
(type II error) arising from over-correction when addressing the confounding effects of 
population structure, especially for any environmental pattern that follows a discrete 
geographical pattern. For example, as reported by Lasky, Josephs, and Morris (2022) 
(Lasky, Josephs, and Morris 2022) in African sorghum landraces, the loss of photoperiod 
sensitivity caused by natural variants in MATURITY1 increases with decreasing latitude. 
However, this association was not significant in a GWA analysis after accounting for 
population structure (Lasky et al. 2015).  

In summary, the absence of correction for population structure increases the 
chances of type I error, and correction for population structure increases the chances of 
missing true associations (type II error). Because we were more concerned in this study 
with reducing the chance of type I error (false positives) than type II error (false negatives), 
we retained the mixed model approach of correction for population structure.  

 
3. Sampling  
The outcome of a GWA analysis is conditioned by the sampled individuals that are 
sequenced and tested for association. Because populations from the 3K landrace 
population are not evenly collected throughout their distribution range, we can expect that 
the existing genetic variation is best described for those populations that may be over-
represented.  

While the sampling is therefore not perfect, from the observation of the latitudinal 
and longitudinal distributions of the included landraces (Figure 1) we can conclude that 
they are fairly evenly distributed. This is especially true considering the enormous 
distribution range covered. Given the large sample size and distribution, including very 
geographically distant accessions, our analysis has an advantage and a caveat. The 
massive amount of genetic and environmental variance included in the analysis, derived 
from a very large and widespread sample, increases the power and confidence in the 
resulting candidates. The caveat has to do, as discussed earlier regarding population 
structure, with an increased proportion of false negatives due to genetic heterogeneity. 
This is because, in some cases, more than one co-correlated genetic variant, which 
differs in frequencies among different populations, underlies the same trait. Such would 
be the case for two different SNPs affecting the same codon resulting in a weakened 
correlation for each SNP with the tested climate.  
 
 



Figure 1. Latitudinal (A) and longitudinal (B) distribution of the Japonica and Indica landrace 
samples included in this study. Pairwise nonparametric Wilcoxon tests were conducted to 
assess differences between alleles between subspecies. **** (p <0.0001); * (0.01 < p < 0.05). 
 
4. Synthetic associations  
Synthetic associations are the association of non-causative markers that are in linkage 
disequilibrium with causative markers. In CLIMGeno, we provide the tools to explore the 
scores, q-values, allele frequencies, and the predicted effect of any identified variant. 
Importantly, to facilitate the identification of synthetic associations, we also provide the 
ability to select a genomic window of a customizable length around any variant of interest 
to visually explore the possible presence of synthetic associations.  

For example, in Arabidopsis within the FRIGIDA (FRI) gene, there is a variety of 
naturally occurring loss-of-function alleles, occurring at different frequencies in natural 
populations, that affect the expression of FLOWERING LOCUS C, a key regulator of 
flowering time that was first identified through natural variation before the implementation 
of GWA studies in Arabidopsis (Johanson et al. 2000). Despite the fact that a considerable 
fraction of the variation in flowering time is explained by the existing natural variation in 
FRI, it has proven difficult to identify FRI using GWAS (Atwell et al. 2010), mostly because 
it has such high allelic heterogeneity (Sasaki et al. 2021), resulting in a false negative.  
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Similarly, synthetic associations can also result in false positives. A previously 
published GWA study highlights the AOP2/AOP3 cluster of glucosinolate biosynthesis 
genes as candidates to regulate flowering time in Swedish Arabidopsis populations. 
However, this was later determined to be a spurious, “synthetic” association, derived from 
the existence of two statistically associated causative loci within linkage disequilibrium 
(Sasaki et al. 2021).  
 
5. Limitations addressed by removing rare variants  
The power of GWAS depends on the phenotypic (and/or environmental) variance within 
the studied population, as explained by the SNPs found in association. For this reason, 
rare variants, present in a limited number of individuals in the population, present 
problems for GWAS (Asimit and Zeggini 2010; Gibson 2012). Mixed models, which are 
effective in finding associations with common variants, have been found to be susceptible 
to spurious associations with variants with rare allele frequencies (Price et al. 2010). 
Additionally, rare variants are prone to be found in association with many other rare 
variants more often than with common variants (Dickson et al. 2010). For example, all 
variants present in just one rice landrace will necessarily be found in association with 
each other. Because here we are interested in likely adaptive variants, found in higher 
frequencies, we addressed this limitation by filtering out uncommon variants (MAF < 5%). 
Despite great improvements in sequencing technologies, the error rate of Next 
Generation Sequencing is approximately 1% (Fox et al. 2014), to which is added the 
inherent human error rate derived from obtaining and manipulating sequencing data from 
diverse research facilities (Buell 2018; Asimit and Zeggini 2010). Our removal of variants 
with MAF < 5% also reduces the chances of inclusion of these errors in our datasets.  
 
(Lasky, Josephs, and Morris 2022) 
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