Caveats and Precautions

In this document we discuss and acknowledge the limitations of GWA analyses, and describe our
approaches to address these to the extent possible. We wish to make the reader and user of
CLIMtools aware of these limitations, so that correlation is not mistaken for causation: GWA
studies demonstrate associations whose potential causative and adaptive relationships require
validation. The caveats associated with GWAS have been extensively described in the literature!-
3, Major caveats are summarized in the main text; here we provide an explication of these
limitations in the context of our study and explain how we have addressed them.

1. Population structure
Perhaps the most studied limitation of genome wide-association studies is the significant presence
of false positives resulting from the confounding effects of populations structure*®. That is, natural
variation may exhibit an elevated allele frequency due to selective pressure from either
environmental factors and/or the genetic background’. Distinguishing the former from the latter
presents a common challenge for GWA studies on any organism’. In recent years, several
approaches have emerged to describe the population structure of an organism, detect the extent of
inflation of p-values obtained from GWAS analysis due to population structure, and correct for it.
Mixed models, as used in our study, address population structure, family structure and cryptic
relatedness in GWAS analysis, reducing the rate of false positives while maintaining statistical
power®?, Mixed models include both fixed and random effects. Including random effects allows
incorporation of information about relationships among individuals by using the kinship matrix

(K).

Arabidopsis displays a well-studied population structure!®-*>, Mixed models outperform
both principal component analysis and genomic control in correcting for population structure'®,
and in Arabidopsis, mixed models are described as the most effective method to correct for
population struture®1”18, Population structure is particularly a cause for concern when studying
associations with traits that vary geographically, e.g. the latitudinal cline in flowering time; and
mixed methods have been successfully applied many times to correct for population structure in
such traits>!4. Associations with environmental variables, as studied here, also fall into this
category. We, therefore used a mixed model*® to ameliorate the confounding effects of population
structure.

Demonstrating the effectiveness of mixed models in accounting for population structure
was not the aim of our study, as this has been demonstrated by many previous studies and has been
well-reviewed!"91718.20-22 Nevertheless, here we exemplify the effectiveness of mixed models in
correcting for population structure in the context of our study with an analysis of the 19 BIO
variables obtained from WorldClim 2%. We chose these environmental variables given their
extensive previous use (previously as WorldClim 12%) in conjunction with mixed models'#2526,
We analyzed these 19 environmental variables using two different approaches that do not correct
for population structure: a non-parametric test, Kruskal-Wallis, and a linear regression model?’.
We compared the distribution of the obtained p-values, with those obtained from the mixed model
that we used (Fig. 1). We found that, as expected, when population structure is not considered in
the association analysis, there is significant statistical inflation that results in the increase of false
positives (Type | error). Based on these analyses, we conclude that the use of a mixed model
successfully reduces statistical inflation derived from population structure, confirming the results
from diverse previous studies.1°




Given that we correct for population structure using a mixed model, we may also expect
that there will be some number of false negative results arising from over-correction when
addressing the confounding effects of population structure, especially for any environmental
pattern that follows a discrete geographical pattern (Fig. 2). Because we were more concerned with
reducing the chance for Type | error than Type Il error (false negatives), we retained the mixed
model approach of correction for population structure.

2. Sampling
Because populations from Sweden and the Iberian Peninsula, with particular interest from

ecological and evolutionary perspectives, are overrepresented in the 1,001 Genomes sample!4, we
can expect that the existing genetic variation is best described in those populations relative to
under-represented populations. While the sampling is therefore not perfect, the 1,001 Genomes
nevertheless represents the best collection of sequenced organisms with ecological relevance to
date. The 1,001 Genomes represents a vast improvement on the sample relative to previous
sequencing efforts in this species,?® as it deliberately includes accessions from relevant locations
based on prior knowledge of the population structure of the species'-142%30 As a result, the 1,001
Genomes provide a “hierarchical collection of accessions with a range of geographic distances
between nearest neighbors, and a few very densely sampled locales!#”.

We include 879 genotypes (accessions) in our in silico analysis, far more than are feasible
to include in typical wet bench GWAS on plant phenotypes. This provides the power to uncover
associations with genetic variants that would have been missed in the case of standard
experimental GWAS, conducted on subsets of Arabidopsis accessions. Given the large sample size
and distribution, including very geographically distant accessions, our analysis has an advantage
and a caveat. The massive amount of genetic and environmental variance included in the analysis,
derived from a very large and widespread sample, increases its the power and confidence in the
resulting candidates. The caveat has to do with an increased proportion of false negatives due to
genetic heterogeneity. This is because in some cases, more than one co-correlated genetic variant,
that differ in frequencies among different populations, underlie the same trait. Such would be the
case of two different SNPs affecting the same codon, or two different SNPs causing the same effect
on the same gene. This will result in a weakened correlation for each SNP that will yield an
increased proportion of false negatives?.

3. Sequencing data
Previous attempts to describe Arabidopsis genetic variation associated with the environment?®,
used SNP arrays available at the time?®. Despite the great value of these studies, it is challenging
to argue that the genetic variance identified using SNP arrays reflects causality, for the simple
reason that the vast majority of the genetic variance present in the sequenced organisms was not
represented on the arrays. For this reason, SNP arrays over-identify non-causal SNPs that are in
linkage disequilibrium with causative variants not present in the array. To exemplify this point, we
conducted GWAS analysis on the 374 accessions used in our study of fully sequenced genomes?4,




that were also previously genotyped using the 250K SNP array?. For this purpose, we conducted
a mixed model analysis as described before using both the full genomic sequences and the SNP
array sequence datasets. We used the 19 BIO variables obtained from WorldClim 223 which were
part of our study, given they were also used (as the previous version, WoldClim 1?4) in analogous
previous studies'#?>26. We found that the genetic variation present for these 374 accessions
consisted of 205,936 SNPs when we used the 250K array; these SNPS constituted just 3.2% of the
6,432,557 SNPs presents in the fully sequenced genomes for the exact same accessions. After
filtering for common variants (MAF>5%), 90.5% of the SNPs present in the fully sequenced
genomes were missing in the 250K SNP array for these 374 accessions. Especially since there was
no a priori information of causality used to identify the SNPs that were included on the SNP arrays,
is difficult to argue that genetic variation within the 250K dataset and the associations obtained
from it are likely to be meaningful causal variants. In Fig. S1 of the main text, we depict how the
use of fully sequenced genotypes increases the numbers of significant association peaks that are
missing from SNP array analysis and, conversely, reveals incomplete significant SNP “towers”
that the 250K SNP array revealed as significant, but that were really in linkage disequilibrium with
missing significant SNPs that were identified when using the fully sequenced dataset.

4. Synthetic associations
Synthetic associations are the association of non-causative markers that are in linkage
disequilibrium with causative markers. In CLIMGeno, we provide the tools to explore the scores,
g-values, allele frequencies and the predicted effect of any identified variant. Perhaps more
importantly, to facilitate the identification of synthetic associations we provide the ability to select
a genomic window of a customizable length around any variant of interest to visually explore the
possible presence of synthetic associations.

5. Multiple comparisons

For every hypothesis tested, there is an inherent risk of accepting a hypothesis that is false.
To reduce the probability of accepting a false positive, researchers usually define a level of
significance for which they determine that the probability of obtaining a type | error is acceptably
low. An issue with all GWA studies is that they do not test one single hypothesis, but rather a vast
number of hypotheses, testing the association of hundreds of thousands of SNPs with the trait of
interest. Accordingly, the presence of false positives in any GWAS is unavoidable. As described
above, full-genome sequencing data facilitates the discovery of causal variants, but there is also a
downside. This has to do to with the fact that the use of full-genome sequences vastly increases
the number of SNPs tested, thus increasing type | error. Given this, it becomes important to
estimate and control for the rate of false positives in such studies®!.

Accordingly, we followed a number of steps to reduce the number of variants considered,
reduce type | error, and prioritize the most likely causal SNPs in the association lists that we
provide: we filtered out SNPs in transposons, SNPs in intergenic regions, and SNPs in genic
regions with a frequency < 5%. Furthermore, we include the information on the predicted effects
of each SNP (e.g., synonymous vs. non-synonymous), locus annotations and description, as well
as allele frequencies corresponding to all associated variants to facilitate a more informed
prioritization of candidates.

Most importantly, to control type | error, we applied the qvalue® package in R using the
Benjamini-Hochberg approach to calculate and provide g-values of the associated SNPs so that
the user can impose any desired FDR threshold. We used each of the 19 BIO variables obtained




from WorldClim 223 to exemplify how the user can estimate the number of significant associations
versus each g-value cut-off, and the number of expected false positives versus the number of
significant tests (Fig. 3). We find that from a typically used FDR of 5%, we can expect a limited
although always present number of estimated false positives, but also a very substantial number of
significant outcomes. The user of CLIMtools may explore any of these parameters using
FDRCLIM, which implements the qvalue R package3>®° to calculate the FDR of all of the EXG
associations described in our study.

Despite our measures to reduce, describe, and control type | error derived from multiple
comparisons, users of our data should be aware that it is not possible to completely eliminate false
positives in any GWA study.

6. Binary data
In the case of binary data, users should be aware that there is an inflation of p-values relative to

continuous data® that should be considered when choosing a score threshold to select candidate
associations, or to compare the strength of association of any variant of interest with other
associated environmental variables®’. In our data, 6 out of the 204 environmental variables
provided reflect variables extracted from environmental categories, such as “Koéppen-Geiger Csa
hot summer Mediterranean climate” that were evaluated in terms of binary data. In this example
accessions collected from hot, summer, Mediterranean climates were evaluated as 1, relative to
all other accessions that were scored as 0. In these instances, the user should exercise caution
given the exaggerated p-values obtained from GWAS analysis of binary data types.

7. Limitations addressed by removing rare variants

The power of GWAS depends on the phenotypic (and/or environmental) variance within the
studied population as explained by the SNPs found in association. For this reason, rare variants,
present in a limited number of individuals in the population, present problems for GWAS339,
Other statistical caveats are relevant when considering rare variants as mixed models, which are
effective for finding associations with common variants, have been found to be susceptible to
spurious associations with variants with rare allele frequencies?!. Additionally, rare variants are
prone to be found in association with many other rare variants more often than with common
variants®, For example, all variants present in just one Arabidopsis accession will necessarily be
found in association with each other. Because here we are interested in likely adaptive variants,
found in higher frequencies, we addressed this limitation by filtering out uncommon variants
(MAF < 5%).

Despite great improvements in sequencing technologies, the error rate of Next Generation
Sequencing is approximately 1%*, to which is added the inherent human error rate derived from
obtaining and manipulating sequencing data from diverse research facilities*>*3. Our removal of
variants with MAF < 5% also reduces the chances of inclusion of these errors in our datasets.
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Figures

Fig. 1. The use of a mixed model reduces the inflation of p-values after correction for
population structure. The excess of significant associations for the 19 WorldClim BIO variables,
using two different association methods (Kruskal-Wallis and linear model) that do not correct for
population structure, with a distribution of p-values skewed strongly towards 0, is expected due to
the confounding effects of population structure which results in an inflation of significant yet
spurious associations. As illustrated, the implementation of the mixed model successfully reduces
this inflation and yields a distribution of p-values which show that, as expected, most of the
variants are not significantly associated with the respective environmental variable, and a few

significant variants remain.
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Fig. 2. As we correct for population structure using a mixed model, we may expect an
increased number of false negatives resulting from over-correction. This is exemplified by a
toy example in which we explore the genetic variants (SNPs) in a simplified scenario depicting
genetic association with a single environmental variable (temperature) that occurs at different
magnitude (y-axis) in three distinct and structured populations, with a “population C” adapted to
lower temperatures relative to the other two (“population A”, and “population B”). Triangles in
“population A”, rhombuses in “population B”, and stars in “population C” represent the population
structure distinctive of each population, in other words, the variants resulting from differences in
genetic ancestry among the populations. Red circles denote variants adaptive to high temperature,
and purple circles denote variants of the same gene adaptive to lower temperatures. When we study
the genetic variation (SNPs) associated with temperature, we identify a number of these variants.
In some cases, the associated variants will be unequivocally associated with high temperature (red
circles). In other cases, we identify other variants that are only present in a single population (stars
and purple circles in “population C”). The problem is that both of these associated variants exhibit
an abrupt change in allele frequency in population C relative to Population A and Population B. It
is therefore difficult to tell whether these changes in allele frequency are the result of genuine
adaptation to low temperature (purple circles), or whether they just reflect a common genetic
background of a structured population (stars). If we were not to correct for population structure,
both the purple circles and the stars would be associated with low temperature; erroneously in the
case of the stars. Thus, we would increase type | error in our results. Conversely, when we correct
for population structure using a mixed model, we reduce this Type | error, as we reduce the
inflation of significant associations and the number of false positives (stars). However, when we
correct for population structure to reduce Type | error, we cannot avoid removing causative
variants (purple circles) that result from genuine selection by the environmental variable which we
are testing (temperature). We thus end up with increased type Il (false negative) error. Because we
were more concerned with reducing Type | error than reducing Type Il error, in our analysis we
correct for population structure and accept the increased possibility of type Il error at the expense
of reduced type I error. In reality, this illustration is an oversimplification given, among other
reasons, that the structures of populations are not discrete and that the great majority of the
environmental variables we studied are continuous. Accordingly, realistically, despite our best
efforts, as in any GWA study we can expect both type I and 11 errors to be present to some extent
in our datasets.



Fig. 3. We used the 19 BIO variables obtained from WorldClim 223 to exemplify the possible
statistical inflation of p-values in our results and type | error. For each variable, Quantile-Quantile
plots depict a distribution of p-values (expressed as scores, or -log(p-value)) following the
expected distribution with a deviation from it as the observed scores increased in significance. A
deviation from the expected scores over the whole range of theoretical quantiles would have
suggested significant statistical inflation and a very significant presence of false positives. Also,
for these variables, we describe the number of significant tests observed for each g-value cut-off,
the relationship between p and g-values, as well as the relationship between expected false
positives and number of significant tests. These results highlight the presence of true signals in our
results, as well as the potential for type I error that will increase depending on the severity of the
FDR threshold imposed.
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